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UNIT -2 
 

PROCESS MANAGEMENT 
 

Process Concept 

An operating system executes a variety of programs: 

Batch system – jobs 

Time-shared systems – user programs or tasks 

Textbook uses the terms job and process almost interchangeably 

Process – a program in execution; process execution must progress in sequential fashion 

A process includes: 

program counter 

stack 

data section 

Process in Memory 

 

 

 

 

 

 

 

 

 

 
Process State 

 

As a process executes, it changes state 

new: The process is being created 

running: Instructions are being executed 

waiting: The process is waiting for some event to occur 

ready: The process is waiting to be assigned to a processor 

terminated: The process has finished execution 

Diagram of Process State 
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Process Control Block (PCB) 

 

Information associated with each process 

Process state 

Program counter 

CPU registers 

CPU scheduling information 

Memory-management information 

Accounting information 

I/O status information 

 
 

CPU Switch From Process to Process 
 

 

 

 

Process Scheduling Queues 
 

Job queue – set of all processes in the system 

Ready queue – set of all processes residing in main memory, ready and waiting to execute 

Device queues – set of processes waiting for an I/O device 

Processes migrate among the various queues 
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Ready Queue and Various I/O Device Queues 
 

 
 

 

Representation of Process Scheduling 
 

Schedulers 

   Long-term scheduler (or job scheduler) – selects which processes should be brought into the ready 
queue 

   Short-term scheduler (or CPU scheduler) – selects which process should be executed next and 
allocates CPU 
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Addition of Medium Term Scheduling 
 

 
Short-term scheduler is invoked very frequently (milliseconds) Þ (must be fast) 

Long-term scheduler is invoked very infrequently (seconds, minutes) Þ (may be slow) 

The long-term scheduler controls the degree of multiprogramming 

Processes can be described as either: 

I/O-bound process – spends more time doing I/O than computations, many short CPU bursts 

CPU-bound process – spends more time doing computations; few very long CPU bursts 

Context Switch 

   When CPU switches to another process, the system must save the state of the old process and load the 
saved state for the new process via a context switch 

Context of a process represented in the PCB 

Context-switch time is overhead; the system does no useful work while switching 

Time dependent on hardware support 

Process Creation 

   Parent process create children processes, which, in turn create other processes, forming a tree of 
processes 

Generally, process identified and managed via a process identifier (pid) 

Resource sharing 

Parent and children share all resources 

Children share subset of parent’s resources 

Parent and child share no resources 

Execution 

Parent and children execute concurrently 

Parent waits until children terminate 

Address space 

Child duplicate of parent 

Child has a program loaded into it 

UNIX examples 

fork system call creates new process 

exec system call used after a fork to replace the process’ memory space with a new program 
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Process Creation 

 

C Program Forking Separate Process 

 

int main() 

{ 

pid_t  pid; 

/* fork another process */ 

pid = fork(); 

if (pid < 0) { /* error occurred */ 

fprintf(stderr, "Fork Failed"); 

exit(-1); 

} 

else if (pid == 0) { /* child process */ 

execlp("/bin/ls", "ls", NULL); 

} 

else { /* parent process */ 

/* parent will wait for the child to complete */ 

wait (NULL); 

printf ("Child Complete"); 

exit(0); 

} 

} 
 

A tree of processes on a typical Solaris 
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Process Termination 

Process executes last statement and asks the operating system to delete it (exit) 

Output data from child to parent (via wait) 

Process’ resources are deallocated by operating system 

Parent may terminate execution of children processes (abort) 

Child has exceeded allocated resources 

Task assigned to child is no longer required 

If parent is exiting Some operating system do not allow child to continue if its parent terminates 

All children terminated - cascading termination 

Interprocess Communication 

Processes within a system may be independent or cooperating 

Cooperating process can affect or be affected by other processes, including sharing data 

Reasons for cooperating processes: 

Information sharing 

Computation speedup 

Modularity 

Convenience 

Cooperating processes need interprocess communication (IPC) 

Two models of IPC 

Shared memory 

Message passing 

 

Communications Models 
 

Cooperating Processes 

Independent process cannot affect or be affected by the execution of another process 

Cooperating process can affect or be affected by the execution of another process 

Advantages of process cooperation 

Information sharing 

Computation speed-up 

Modularity 

Convenience 
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Producer-Consumer Problem 

   Paradigm for cooperating processes, producer process produces information that is consumed by a 

consumer process 

unbounded-buffer places no practical limit on the size of the buffer 

bounded-buffer assumes that there is a fixed buffer size 

Bounded-Buffer – Shared-Memory Solution 

Shared data 

#define BUFFER_SIZE 10 

typedef struct { 

. . . 

} item; 

item buffer[BUFFER_SIZE]; 

int in = 0; 

int out = 0; 

Solution is correct, but can only use BUFFER_SIZE-1 elements 

 

Bounded-Buffer – Producer 

while (true) { 

/* Produce an item */ 

while (((in = (in + 1) % BUFFER SIZE count) == out) 

; /* do nothing -- no free buffers */ 

buffer[in] = item; 

in = (in + 1) % BUFFER SIZE; 

} 

 

Bounded Buffer – Consumer 

while (true) { 

while (in == out) 

; // do nothing -- nothing to consume 

// remove an item from the buffer 

item = buffer[out]; 

out = (out + 1) % BUFFER SIZE; 

return item; 

} 

Interprocess Communication – Message Passing 

Mechanism for processes to communicate and to synchronize their actions 

Message system – processes communicate with each other without resorting to shared variables 

IPC facility provides two operations: 

send(message) – message size fixed or variable 

receive(message) 

If P and Q wish to communicate, they need to: 

establish a communication link between them 

exchange messages via send/receive 

Implementation of communication link 

physical (e.g., shared memory, hardware bus) 

logical (e.g., logical properties) 
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Direct Communication 

Processes must name each other explicitly: 

send (P, message) – send a message to process P 

receive(Q, message) – receive a message from process Q 

Properties of communication link 

Links are established automatically 

A link is associated with exactly one pair of communicating processes 

Between each pair there exists exactly one link 

The link may be unidirectional, but is usually bi-directional 

 

Indirect Communication 

Messages are directed and received from mailboxes (also referred to as ports) 

Each mailbox has a unique id 

Processes can communicate only if they share a mailbox 

Properties of communication link 

Link established only if processes share a common mailbox 

A link may be associated with many processes 

Each pair of processes may share several communication links 

Link may be unidirectional or bi-directional 

Operations 

create a new mailbox 

send and receive messages through mailbox 

destroy a mailbox 

Primitives are defined as: 

send(A, message) – send a message to mailbox A 

receive(A, message) – receive a message from mailbox A 

Mailbox sharing 

P1, P2, and P3 share mailbox A 

P1, sends; P2 and P3 receive 

Who gets the message? 

Solutions 

Allow a link to be associated with at most two processes 

Allow only one process at a time to execute a receive operation 

Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was. 

Synchronization 

Message passing may be either blocking or non-blocking 

Blocking is considered synchronous 

Blocking send has the sender block until the message is received 

Blocking receive has the receiver block until a message is available 

Non-blocking is considered asynchronous 

Non-blocking send has the sender send the message and continue 

Non-blocking receive has the receiver receive a valid message or null 
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Buffering 

Queue of messages attached to the link; implemented in one of three ways 

1. Zero capacity – 0 messages 

Sender must wait for receiver (rendezvous) 

2. Bounded capacity – finite length of n messages 

Sender must wait if link full 

3. Unbounded capacity – infinite length 

Sender never waits 

Examples of IPC Systems - POSIX 

POSIX Shared Memory 

Process first creates shared memory segment 

segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR); 

Process wanting access to that shared memory must attach to it 

shared memory = (char *) shmat(id, NULL, 0); 

Now the process could write to the shared memory 

printf(shared memory, "Writing to shared memory"); 

When done a process can detach the shared memory from its address space 

shmdt(shared memory); 

Examples of IPC Systems - Mach 

Mach communication is message based 

Even system calls are messages 

Each task gets two mailboxes at creation- Kernel and Notify 

Only three system calls needed for message transfer 

msg_send(), msg_receive(), msg_rpc() 

Mailboxes needed for commuication, created via 

port_allocate() 

Examples of IPC Systems – Windows XP 

Message-passing centric via local procedure call (LPC) facility 

Only works between processes on the same system 

Uses ports (like mailboxes) to establish and maintain communication channels 

Communication works as follows: 

The client opens a handle to the subsystem’s connection port object 
The client sends a connection request 

The server creates two private communication ports and returns the handle to one of them to the client 

The client and server use the corresponding port handle to send messages or callbacks and to listen for 

replies 
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Local Procedure Calls in Windows XP 
 

 
Communications in Client-Server Systems 

Sockets 

Remote Procedure Calls 

Remote Method Invocation (Java) 

Sockets 

A socket is defined as an endpoint for communication 

Concatenation of IP address and port 

The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8 

Communication consists between a pair of sockets 

Socket Communication 
 

Remote Procedure Calls 

Remote procedure call (RPC) abstracts procedure calls between processes on networked systems 

Stubs – client-side proxy for the actual procedure on the server 

The client-side stub locates the server and marshalls the parameters 

The server-side stub receives this message, unpacks the marshalled parameters, and peforms the 

procedure on the server 
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Execution of RPC 

 

 
Remote Method Invocation 

Remote Method Invocation (RMI) is a Java mechanism similar to RPCs 

RMI allows a Java program on one machine to invoke a method on a remote object 

 

 

 

 

Marshalling Parameters 
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Threads 

   To introduce the notion of a thread — a fundamental unit of CPU utilization that forms the basis of 
multithreaded computer systems 

To discuss the APIs for the Pthreads, Win32, and Java thread libraries 

To examine issues related to multithreaded programming 

Single and Multithreaded Processes 

 
Benefits 

Responsiveness 

Resource Sharing 

Economy 

Scalability 

Multicore Programming 

Multicore systems putting pressure on programmers, challenges include 

Dividing activities 

Balance 

Data splitting 

Data dependency 

Testing and debugging 

Multithreaded Server Architecture 
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Concurrent Execution on a Single-core System 

 

 
Parallel Execution on a Multicore System 

 

 
 

 
User Threads 

Thread management done by user-level threads librarynThree primary thread libraries: 

POSIX Pthreadsl Win32 threads 

Java threads 

Kernel Threads 

Supported by the Kernel 

Examples 

Windows XP/2000 

Solaris 

Linux 

Tru64 UNIX 

Mac OS X 

Multithreading Models 

Many-to-One 

One-to-One 

Many-to-Many 

Many-to-One 

Many user-level threads mapped to single kernel thread 

Examples: 

Solaris Green Threads 

GNU Portable Threads 

 

One-to-One 

Each user-level thread maps to kernel thread 

Examples 

Windows NT/XP/2000 

Linux 
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Solaris 9 and later 
 

 
 

Many-to-Many Model 

Allows many user level threads to be mapped to many kernel threads 

Allows the operating system to create a sufficient number of kernel threads 

Solaris prior to version 9 

Windows NT/2000 with the ThreadFiber package 

 

Two-level Model 

Similar to M:M, except that it allows a user thread to be bound to kernel thread 

Examples 

IRIX 

HP-UX 

Tru64 UNIX 

Solaris 8 and earlier 
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Thread Libraries 

Thread library provides programmer with API for creating and managing threads 

Two primary ways of implementing 

Library entirely in user space 

Kernel-level library supported by the OS 

Pthreads 

May be provided either as user-level or kernel-level 

A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization 

API specifies behavior of the thread library, implementation is up to development of the library 

Common in UNIX operating systems (Solaris, Linux, Mac OS X) 

Java Threads 

Java threads are managed by the JVM 

Typically implemented using the threads model provided by underlying OS 

Java threads may be created by:lExtending Thread class 

Implementing the Runnable interface 

Threading Issues 

Semantics of fork() and exec() system calls 

Thread cancellation of target thread 

Asynchronous or deferred 

Signal handling 

Thread pools 

Thread-specific data 

Scheduler activations 

Thread Cancellation 

Terminating a thread before it has finished 

Two general approaches: 

Asynchronous cancellation terminates the target thread immediately 

Deferred cancellation allows the target thread to periodically check if it should be cancelled 

Signal Handling 

Signals are used in UNIX systems to notify a process that a particular event has occurred 

A signal handler is used to process signals 

1. Signal is generated by particular event 

2.Signal is delivered to a process 

3.Signal is handled 

Options: 

Deliver the signal to the thread to which the signal applies 

Deliver the signal to every thread in the process 

Deliver the signal to certain threads in the process 

Assign a specific threa to receive all signals for the process 

Thread Pools 

Create a number of threads in a pool where they await work 

Advantages: 

Usually slightly faster to service a request with an existing thread than create a new thread 

Allows the number of threads in the application(s) to be bound to the size of the pool 
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Thread Specific Data 

Allows each thread to have its own copy of data 

Useful when you do not have control over the thread creation process (i.e., when using a thread pool) 

Scheduler Activations 

   Both M:M and Two-level models require communication to maintain the appropriate number of kernel 

threads allocated to the application 

   Scheduler activations provide upcalls - a communication mechanism from the kernel to the thread 
library 

   This communication allows an application to maintain the correct number kernel threads 

Windows XP Threads 
 
 

 
Implements the one-to-one mapping, kernel-level 

Each thread contains 

A thread id 

Register set 

Separate user and kernel stacks 

Private data storage area 

The register set, stacks, and private storage area are known as the context of the threads 

The primary data structures of a thread include: 

ETHREAD (executive thread block) 

KTHREAD (kernel thread block) 

TEB (thread environment block) 
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Linux Threads 
 
 

 
Linux refers to them as tasks rather than threads 

Thread creation is done through clone() system call 

clone() allows a child task to share the address space of the parent task (process) 

CPU Scheduling 

To introduce CPU scheduling, which is the basis for multiprogrammed operating systems 

To describe various CPU-scheduling algorithms 

To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system 

Maximum CPU utilization obtained with multiprogramming 

CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait 

CPU burst distribution 

Histogram of CPU-burst Times 
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Alternating Sequence of CPU And I/O Bursts 
 
 

 
CPU Scheduler 

Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them 

CPU scheduling decisions may take place when a process: 

1. Switches from running to waiting state 

2. Switches from running to ready state 

3. Switches from waiting to ready 

4. Terminates 

Scheduling under 1 and 4 is nonpreemptive 

All other scheduling is preemptive 

Dispatcher 

   Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this 
involves: 

switching context 

switching to user mode 

jumping to the proper location in the user program to restart that program 

Dispatch latency – time it takes for the dispatcher to stop one process and start another running 

Scheduling Criteria 

CPU utilization – keep the CPU as busy as possible 

Throughput – # of processes that complete their execution per time unit 

Turnaround time – amount of time to execute a particular process 

Waiting time – amount of time a process has been waiting in the ready queue 

Response time – amount of time it takes from when a request was submitted until the first response is 

produced, not output (for time-sharing environment) 

Max CPU utilization 

Max throughput 

Min turnaround time 

Min waiting time 

Min response time 
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First-Come, First-Served (FCFS) Scheduling 

Process Burst Time 

P1 24 

P2 3 

P3 3 

Suppose that the processes arrive in the order: P1 , P2 , P3 

The Gantt Chart for the schedule is: 
 
 

P1 P2 P3 

   

0 24 27 30 
 
 
 

Waiting time for P1 = 0; P2 = 24; P3 = 27 

Average waiting time: (0 + 24 + 27)/3 = 17 

Suppose that the processes arrive in the order 

P2 , P3 , P1 

The Gantt chart for the schedule is:nnnnWaiting time for P1 = 6; P2 = 0; P3 = 3nAverage waiting time: (6 + 

0 + 3)/3 = 3 

Much better than previous case 

Convoy effect short process behind long process 
 

 

 

 

 

 

 

0 3 6 30 
Shortest-Job-First (SJF) Scheduling 

 

   Associate with each process the length of its next CPU burst. Use these lengths to schedule the process 

with the shortest time 

   SJF is optimal – gives minimum average waiting time for a given set of processes 
The difficulty is knowing 

 Process Arrival Time Burst Time 

P1 0.0 6 

P2 2.0 8 

P3 4.0 7 

P4 5.0 3 

P2 P3 P1 
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SJF scheduling chart 

average waiting time = (3 + 16 + 9 + 0) / 4 = 7the length of the next CPU request 
 

 

 

 

 

 

 

0 3 9 16 24 
Determining Length of Next CPU Burst 

1. tn actual length of nth CPU burst 

2. n 1 predicted value for the next CPU burst 

3. , 0 1 

4. Define : 
Can only estimate the length 

Can be done by using the length of previous CPU bursts, using exponential averaging 

Prediction of the Length of the Next CPU Burst 
 

 

Examples of Exponential Averaging 

a =0 

tn+1 = tn 

Recent history does not count 

a =1 

tn+1 = a tn 

Only the actual last CPU burst counts 

If we expand the formula, we get: 

tn+1 = a tn+(1 - a)a tn -1 + … 

+(1 - a )j a tn -j + … 

P4 P1 P3 P2 
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her avera ge turnar ound tha n SJF, but better re sponse 

+(1 - a )n +1 t0 

Since both a and (1 - a) are less than or equal to 1, each successive term has less weight than its predecessor 

Priority Scheduling 

A priority number (integer) is associated with each process 

The CPU is allocated to the process with the highest priority (smallest integer º highest priority) 

Preemptive 

nonpreemptive 

SJF is a priority scheduling where priority is the predicted next CPU burst time 

Problem º Starvation – low priority processes may never execute 

Solution º Aging – as time progresses increase the priority of the process 

Round Robin (RR) 

 

   Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this 

time has elapsed, the process is preempted and added to the end of the ready queue. 

   If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the 
CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units. 

Performance 

q large Þ FIFO 

q small Þ q must be large with respect to context switch, otherwise overhead is too high 

Example of RR with Time Quantum = 4 

Process Burst Time 

P1 24 

P2 3 

P3 3 

 

The Gantt chart is: 

 

Typically, hig 

 

0 4 7 10 14 18 22 26 30 

Time Quantum and Context Switch Time 
 

 

 

P1 P2 P3 P1 P1 P1 P1 P1 
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Turnaround Time Varies With The Time Quantum 
 
 

Multilevel Queue 

   Ready queue is partitioned into separate queues: 
foreground (interactive) 

background (batch) 

Each queue has its own scheduling algorithm 

foreground – RR 

background – FCFS 

Scheduling must be done between the queues 

Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of 

starvation. 

   Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; 
i.e., 80% to foreground in RR 

20% to background in FCFS 

 

Multilevel Queue Scheduling 
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Multilevel Feedback Queue 

A process can move between the various queues; aging can be implemented this way 

Multilevel-feedback-queue scheduler defined by the following parameters: 

number of queues 

scheduling algorithms for each queue 

method used to determine when to upgrade a process 

method used to determine when to demote a process 

method used to determine which queue a process will enter when that process needs service 

Example of Multilevel Feedback Queue 

Three queues: 

Q0 – RR with time quantum 8 milliseconds 

Q1 – RR time quantum 16 milliseconds 

Q2 – FCFS 

Scheduling 

A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it 

does not finish in 8 milliseconds, job is moved to queue Q1. 

   At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it 

is preempted and moved to queue Q2. 

Multilevel Feedback Queues 
 

Thread Scheduling 

Distinction between user-level and kernel-level threads 

Many-to-one and many-to-many models, thread library schedules user-level threads to run on LWP 

Known as process-contention scope (PCS) since scheduling competition is within the process 

Kernel thread scheduled onto available CPU is system-contention scope (SCS) – competition among 

all threads in system 

Pthread Scheduling 

API allows specifying either PCS or SCS during thread creation 

PTHREAD SCOPE PROCESS schedules threads using PCS scheduling 

PTHREAD SCOPE SYSTEM schedules threads using SCS scheduling. 

 

Pthread Scheduling API 

#include <pthread.h> 
#include <stdio.h> 

#define NUM THREADS 5 

int main(int argc, char *argv[]) 
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{ 

int i; pthread t tid[NUM THREADS]; 

pthread attr t attr; 

/* get the default attributes */ 

pthread attr init(&attr); 

/* set the scheduling algorithm to PROCESS or SYSTEM */ 

pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM); 

/* set the scheduling policy - FIFO, RT, or OTHER */ 

pthread attr setschedpolicy(&attr, SCHED OTHER); 

/* create the threads */ 

for (i = 0; i < NUM THREADS; i++) 

pthread create(&tid[i],&attr,runner,NULL); 

/* now join on each thread */ 

for (i = 0; i < NUM THREADS; i++) 

pthread join(tid[i], NULL); 

} 

/* Each thread will begin control in this function */ 

void *runner(void *param) 

{ 

printf("I am a thread\n"); 

pthread exit(0); 

} 
 

Multiple-Processor Scheduling 

CPU scheduling more complex when multiple CPUs are available 

Homogeneous processors within a multiprocessor 

Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating the 

need for data sharing 

   Symmetric multiprocessing (SMP) – each processor is self-scheduling, all processes in common ready 
queue, or each has its own private queue of ready processes 

Processor affinity – process has affinity for processor on which it is currently running 

soft affinity 

hard affinity 

 

NUMA and CPU Scheduling 
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Multicore Processors 

Recent trend to place multiple processor cores on same physical chip 

Faster and consume less power 

Multiple threads per core also growing 

Takes advantage of memory stall to make progress on another thread while memory retrieve happens 

 

Multithreaded Multicore System 
 

 
Operating System Examples 

Solaris scheduling 

Windows XP scheduling 

Linux scheduling 

Solaris Dispatch Table 
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Solaris Scheduling 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Windows XP Priorities 
 
 

Linux Scheduling 

Constant order O(1) scheduling time 

Two priority ranges: time-sharing and real-time 

Real-time range from 0 to 99 and nice value from 100 to 140 
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Priorities and Time-slice length 

 

 
 

List of Tasks Indexed According to Priorities 
 

 
Algorithm Evaluation 

   Deterministic modeling – takes a particular predetermined workload and defines the performance of 
each algorithm for that workload 

Queuing models 

Implementation 

Evaluation of CPU schedulers by Simulation 
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CONCURRENCY 
 

Process Synchronization 

   To introduce the critical-section problem, whose solutions can be used to ensure the consistency of 
shared data 

To present both software and hardware solutions of the critical-section problem 

To introduce the concept of an atomic transaction and describe mechanisms to ensure atomicity 

Concurrent access to shared data may result in data inconsistency 

Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating 

processes 

   Suppose that we wanted to provide a solution to the consumer-producer problem that fills all the buffers. 
We can do so by having an integer count that keeps track of the number of full buffers.  Initially, count 

is set to 0. It is incremented by the producer after it produces a new buffer and is decremented by the 
consumer after it consumes a buffer 

Producer 

while (true) { 
 

/* produce an item and put in nextProduced */ 

while (count == BUFFER_SIZE) 

; // do nothing 

buffer [in] = nextProduced; 

in = (in + 1) % BUFFER_SIZE; 

count++; 

} 

Consumer 

while (true) { 

while (count == 0) 

; // do nothing 

nextConsumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

count--; 

/* consume the item in nextConsumed 

} 

Race Condition 

count++ could be implemented as 

 

register1 = count 

register1 = register1 + 1 

count = register1 

count-- could be implemented as 

 

register2 = count 

register2 = register2 - 1 

count = register2 

Consider this execution interleaving with “count = 5” initially: 
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S0: producer execute register1 = count {register1 = 5} 

S1: producer execute register1 = register1 + 1 {register1 = 6} 

S2: consumer execute register2 = count {register2 = 5} 

S3: consumer execute register2 = register2 - 1 {register2 = 4} 

S4: producer execute count = register1 {count = 6 } 

S5: consumer execute count = register2   {count = 4} 

Solution to Critical-Section Problem 

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can be executing 

in their critical sections 

2. Progress - If no process is executing in its critical section and there exist some processes that wish to enter 

their critical section, then the selection of the processes that will enter the critical section next cannot be 

postponed indefinitely 

3. Bounded Waiting - A bound must exist on the number of times that other processes are allowed to enter their 

critical sections after a process has made a request to enter its critical section and before that request is granted 

Assume that each process executes at a nonzero speed 

No assumption concerning relative speed of the N processes 

 

Peterson’s Solution 

Two process solution 

Assume that the LOAD and STORE instructions are atomic; that is, cannot be interrupted. 

The two processes share two variables: 

int turn; 

Boolean flag[2] 

The variable turn indicates whose turn it is to enter the critical section. 

The flag array is used to indicate if a process is ready to enter the critical section. flag[i] = true implies 

that process Pi is ready! 

Algorithm for Process Pi 

do { 

flag[i] = TRUE; 

turn = j; 

while (flag[j] && turn == j); 

critical section 

flag[i] = FALSE; 

remainder section 

} while (TRUE); 

Synchronization Hardware 

Many systems provide hardware support for critical section code 

Uniprocessors – could disable interrupts 

Currently running code would execute without preemption 

Generally too inefficient on multiprocessor systems 

Operating systems using this not broadly scalable 

   Modern machines provide special atomic hardware instructions 
Atomic = non-interruptable 

Either test memory word and set value Or swap contents of two memory words 
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Solution to Critical-section Problem Using Locks 

do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 

TestAndSet Instruction 

Definition: 

boolean TestAndSet (boolean *target) 

{ 

boolean rv = *target; 

*target = TRUE; 

return rv: 

} 

Solution using TestAndSet 

Shared boolean variable lock., initialized to false. 

Solution: 

do { 

while ( TestAndSet (&lock )) 

;   // do nothing 

// critical section 

lock = FALSE; 

// remainder section 

} while (TRUE); 

 

Swap Instruction 

Definition: 

void Swap (boolean *a, boolean *b) 

{ 

boolean temp = *a; 

*a = *b; 

*b = temp: 

} 
 

 

Solution using Swap 

Shared Boolean variable lock initialized to FALSE; Each process has a local Boolean variable key 

Solution: 

do { 

key = TRUE; 

while ( key == TRUE) 

Swap (&lock, &key ); 

 

// critical section 

lock = FALSE; 
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// remainder section 

} while (TRUE); 

 

Bounded-waiting Mutual Exclusion with TestandSet() 

do { 

waiting[i] = TRUE; 

key = TRUE; 

while (waiting[i] && key) 

key = TestAndSet(&lock); 

waiting[i] = FALSE; 

// critical section 

j = (i + 1) % n; 

while ((j != i) && !waiting[j]) 

j = (j + 1) % n; 

if (j == i) 

lock = FALSE; 

else 

waiting[j] = FALSE; 

// remainder section 

} while (TRUE); 

 
 

Semaphore 

Synchronization tool that does not require busy waiting nSemaphore S – integer variable 

Two standard operations modify S: wait() and signal() 

Originally called P() and V() 

Less complicated 

Can only be accessed via two indivisible (atomic) operations 
wait (S) { 

while S <= 0 

; // no-op 

S--; 

} 

signal (S) { 

S++; 

} 

 

Semaphore as General Synchronization Tool 

Counting semaphore – integer value can range over an unrestricted domain 

Binary semaphore – integer value can range only between 0 

and 1; can be simpler to implement 

Also known as mutex locksnCan implement a counting semaphore S as a binary semaphore 

Provides mutual exclusionSemaphore mutex; // initialized to do { 

wait (mutex); 
// Critical Section 

signal (mutex); 

// remainder section 
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} while (TRUE); 

 

Semaphore Implementation 

   Must guarantee that no two processes can execute wait () and signal () on the same semaphore at the 
same time 

   Thus, implementation becomes the critical section problem where the wait and signal code are placed in 
the crtical section. 

   Could now have busy waiting in critical section implementation 

But implementation code is short 

Little busy waiting if critical section rarely occupied 

   Note that applications may spend lots of time in critical sections and therefore this is not a good 
solution. 

Semaphore Implementation with no Busy waiting 

   With each semaphore there is an associated waiting queue. Each entry in a waiting queue has two data 
items: 

value (of type integer) 

pointer to next record in the list 

Two operations: 

block – place the process invoking the operation on the appropriate waiting queue. 

wakeup – remove one of processes in the waiting queue and place it in the ready queue. 

 

Implementation of wait: 

wait(semaphore *S) { 

S->value--; 

if (S->value < 0) { 

add this process to S->list; 

block(); 

} 

} 

Implementation of signal: 

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) { 

remove a process P from S->list; 

wakeup(P); 

} 

} 
 

Deadlock and Starvation 

   Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only one 
of the waiting processes 

Let S and Q be two semaphores initialized to 1 
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P0 

wait (S); 

wait (Q); 

. 

P1 

wait (Q); 

wait (S); 

 

. 

. 
signal (S); 

 

 
signal (Q); 

. 

. 

signal (Q); signal (S);  

   Starvation – indefinite blocking. A process may never be removed from the semaphore queue in which 
it is suspended 

   Priority Inversion - Scheduling problem when lower-priority process holds a lock needed by higher- 
priority process 

Classical Problems of Synchronization 

Bounded-Buffer Problem 

Readers and Writers Problem 

Dining-Philosophers Problem 

 

Bounded-Buffer Problem 

N buffers, each can hold one item 

Semaphore mutex initialized to the value 1 

Semaphore full initialized to the value 0 

Semaphore empty initialized to the value N. 

The structure of the producer process 

do  { // produce an item in nextp 

wait (empty); 

wait (mutex); 

// add the item to the buffer 

signal (mutex); 

signal (full); 

} while (TRUE); 

The structure of the consumer process 

do { wait (full); 

wait (mutex); 

// remove an item from buffer to nextc 

signal (mutex); 

signal (empty); 

 

// consume the item in nextc 

} while (TRUE); 

Readers-Writers Problem 

A data set is shared among a number of concurrent processes 

Readers – only read the data set; they do not perform any updates 

Writers – can both read and writenProblem – allow multiple readers to read at the same time. Only one 

single writer can access the shared data at the same time 

Shared Data 
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Data set 

Semaphore mutex initialized to 1 

Semaphore wrt initialized to 1 

Integer readcount initialized to 0 

The structure of a writer process 
 

do { wait (wrt) ; 

 

// writing is performed 

signal (wrt) ; 

} while (TRUE); 

 
 

The structure of a reader process 

do { 

wait (mutex) ; 

readcount ++ ; 

if (readcount == 1) 

wait (wrt) ; 

signal (mutex) 

 

// reading is performed 

wait (mutex) ; 

readcount - - ; 

if (readcount == 0) 

signal (wrt) ; 

signal (mutex) ; 

} while (TRUE); 

 

Dining-Philosophers Problem 
 
 

 
do { 

Shared data 

Bowl of rice (data set) 

Semaphore chopstick [5] initialized to 1 

The structure of Philosopher i: 

 

wait ( chopstick[i] ); 

wait ( chopStick[ (i + 1) % 5] ); 

 

// eat 

signal ( chopstick[i] ); 

signal (chopstick[ (i + 1) % 5] ); 
 

// think 

} while (TRUE); 
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Problems with Semaphores 

Incorrect use of semaphore operations: 

l signal (mutex) 

…. 

wait (mutex) 

 

wait (mutex) … 

wait (mutex) 

Omitting of wait (mutex) or signal (mutex) (or both) 

 

Monitors 

A high-level abstraction that provides a convenient and effective mechanism for process synchronization 

Only one process may be active within the monitor at a time 

monitor monitor-name 

{ 

// shared variable declarations 

procedure P1 (…) { …. } 

… 

procedure Pn (…) {……} 

Initialization code ( ….) { … } 

… 

} 

} 

Schematic view of a Monitor 

 

 

Condition Variables 

 

condition x, y; 

Two operations on a condition variable: 

x.wait () – a process that invokes the operation is 

suspended. 

x.signal () – resumes one of processes (if any) that 

invoked x.wait () 
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Monitor with Condition Variables 
 

 

Solution to Dining Philosophers 

 

monitor DP 

{ 

enum { THINKING; HUNGRY, EATING) state [5] ; 

condition self [5]; 

void pickup (int i) { 

state[i] = HUNGRY; 

test(i); 

if (state[i] != EATING) self [i].wait; 

} 

 

void putdown (int i) { 

state[i] = THINKING; 

// test left and right neighbors 

test((i + 4) % 5); 

test((i + 1) % 5); 

} 

 
 

void test (int i) { 

if ( (state[(i + 4) % 5] != EATING) && 

(state[i] == HUNGRY) && 

(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ; 

self[i].signal () ; 

} 

} 

initialization_code() { 

for (int i = 0; i < 5; i++) 

state[i] = THINKING; 

} 

} 
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Each philosopher I invokes the operations pickup() 

and putdown() in the following sequence: 

DiningPhilosophters.pickup (i); 

EAT 

DiningPhilosophers.putdown (i); 

 

Monitor Implementation Using Semaphores 
 

Variables  
semaphore mutex; // (initially = 1) 

semaphore next; // (initially = 0) 

int next-count = 0;nEach procedure F will be replaced by 

wait(mutex); 

… 

body of F; 

… 

if (next_count > 0) 

signal(next) 

else 

signal(mutex);nMutual exclusion within a monitor is ensured. 
 

Monitor Implementation 

For each condition variable x, we have: 

semaphore x_sem; // (initially = 0) 

int x-count = 0;nThe operation x.wait can be implemented as: 

 

x-count++; 

if (next_count > 0) 

signal(next); 

else 

signal(mutex); 

wait(x_sem); 

x-count--; 

 

The operation x.signal can be implemented as: 

if (x-count > 0) { 

next_count++; 

signal(x_sem); 

wait(next); 

next_count--; 

} 

A Monitor to Allocate Single Resource 

monitor ResourceAllocator 

{ 

boolean busy; 

condition x; 

void acquire(int time) { 
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if (busy) 

x.wait(time); 

busy = TRUE; 

} 

void release() { 

busy = FALSE; 

x.signal(); 

 

initialization code() { 

 
 

} 

} 

 

busy = FALSE; 

} 

 

Synchronization Examples 

Solaris 

Windows XP 

Linux 

Pthreads 

Solaris Synchronization 

   Implements a variety of locks to support multitasking, multithreading (including real-time threads), 
and multiprocessing 

Uses adaptive mutexes for efficiency when protecting data from short code segments 

Uses condition variables and readers-writers locks when longer sections of code need access to data 

Uses turnstiles to order the list of threads waiting to acquire either an adaptive mutex or reader-writer 

lock 

 

Windows XP Synchronization 

Uses interrupt masks to protect access to global resources on uniprocessor systems 

Uses spinlocks on multiprocessor systems 

Also provides dispatcher objects which may act as either mutexes and semaphores 

Dispatcher objects may also provide events 

An event acts much like a condition variable 

Linux Synchronization 

Linux:lPrior to kernel Version 2.6, disables interrupts to implement short critical sections 

Version 2.6 and later, fully preemptive 

Linux provides: 

semaphores 

spin locks 

 
 

Pthreads Synchronization 

Pthreads API is OS-independent 

It provides: 

mutex locks 

condition variablesnNon-portable extensions include: 

read-write locks 
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spin locks 
 

Atomic Transactions 

System Model 

Log-based Recovery 

Checkpoints 

Concurrent Atomic Transactions 

 

System Model 

Assures that operations happen as a single logical unit of work, in its entirety, or not at all 

Related to field of database systems 

Challenge is assuring atomicity despite computer system failures 

Transaction - collection of instructions or operations that performs single logical function 

Here we are concerned with changes to stable storage – disk 

Transaction is series of read and write operations 

Terminated by commit (transaction successful) or abort (transaction failed) operation Aborted 

transaction must be rolled back to undo any changes it performed 

Types of Storage Media 

Volatile storage – information stored here does not survive system crashes 

Example: main memory, cache 

Nonvolatile storage – Information usually survives crashes 

Example: disk and tape 

Stable storage – Information never lost 

Not actually possible, so approximated via replication or RAID to devices with independent failure 

modes 

   Goal is to assure transaction atomicity where failures cause loss of information on volatile storage 

 

Log-Based Recovery 

Record to stable storage information about all modifications by a transaction 

Most common is write-ahead logging 

Log on stable storage, each log record describes single transaction write operation, including 
Transaction name 

Data item name 

Old value 

New value 

<Ti starts> written to log when transaction Ti starts 

<Ti commits> written when Ti commits 

Log entry must reach stable storage before operation on data occurs 

 

Log-Based Recovery Algorithm 

Using the log, system can handle any volatile memory errors 

Undo(Ti) restores value of all data updated by Ti 

Redo(Ti) sets values of all data in transaction Ti to new values 

Undo(Ti) and redo(Ti) must be idempotent 

Multiple executions must have the same result as one execution 
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If system fails, restore state of all updated data via log 

If log contains <Ti starts> without <Ti commits>, undo(Ti) 

If log contains <Ti starts> and <Ti commits>, redo(Ti) 

Checkpoints 

Log could become long, and recovery could take long 

Checkpoints shorten log and recovery time. 

Checkpoint scheme: 

1.Output all log records currently in volatile storage to stable storage 

2.Output all modified data from volatile to stable storage 

3. Output a log record <checkpoint> to the log on stable storage 

Now recovery only includes Ti, such that Ti started executing before the most recent checkpoint, and all 

transactions after Ti All other transactions already on stable storage 

 

Concurrent Transactions 

Must be equivalent to serial execution – serializability 

Could perform all transactions in critical section 

Inefficient, too restrictive 

Concurrency-control algorithms provide serializability 

 

Serializability 
 

Consider two data items A and B 

Consider Transactions T0 and T1 

Execute T0, T1 atomically 

Execution sequence called schedule 

Atomically executed transaction order called serial schedule 

For N transactions, there are N! valid serial schedules 

Schedule 1: T0 then T1 

 

 

 

 

Nonserial Schedule 

Nonserial schedule allows overlapped execute 

Resulting execution not necessarily incorrect 

Consider schedule S, operations Oi, Oj 

Conflict if access same data item, with at least one write 

If Oi, Oj consecutive and operations of different transactions & Oi and Oj don’t conflict 

Then S’ with swapped order Oj Oi equivalent to S 

If S can become S’ via swapping nonconflicting operations 

S is conflict serializable 
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Schedule 2: Concurrent Serializable Schedule 
 

 

 
Locking Protocol 

 

Ensure serializability by associating lock with each data item 

Follow locking protocol for access control 

Locks 

Shared – Ti has shared-mode lock (S) on item Q, Ti can read Q but not write Q 

Exclusive – Ti has exclusive-mode lock (X) on Q, Ti can read and write Q 

Require every transaction on item Q acquire appropriate lock 

If lock already held, new request may have to wait 

Similar to readers-writers algorithm 

 

Two-phase Locking Protocol 

Generally ensures conflict serializability 

Each transaction issues lock and unlock requests in two phases 

Growing – obtaining locks 

Shrinking – releasing locks 

Does not prevent deadlock 

Timestamp-based Protocols 

Select order among transactions in advance – timestamp-ordering 

Transaction Ti associated with timestamp TS(Ti) before Ti starts 

TS(Ti) < TS(Tj) if Ti entered system before Tj 

TS can be generated from system clock or as logical counter incremented at each entry of transaction 

Timestamps determine serializability order 

If TS(Ti) < TS(Tj), system must ensure produced schedule equivalent to serial schedule where Ti 

appears before Tj 

Timestamp-based Protocol Implementation 

 
Data item Q gets two timestamps 

W-timestamp(Q) – largest timestamp of any transaction that executed write(Q) successfully 

R-timestamp(Q) – largest timestamp of successful read(Q) 
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Updated whenever read(Q) or write(Q) executed 

Timestamp-ordering protocol assures any conflicting read and write executed in timestamp order 
Suppose Ti executes read(Q) 

 
If TS(Ti) < W-timestamp(Q), Ti needs to read value of Q that was already overwritten read operation rejected 

and Ti rolled back 

If TS(Ti) ≥ W-timestamp(Q) read executed, R-timestamp(Q) set to max(R-timestamp(Q), TS(Ti)) 

Timestamp-ordering Protocol 

 

Supose Ti executes write (Q) 

If TS(Ti) < R-timestamp(Q), value Q produced by Ti was needed previously and Ti assumed it would never be 

produced Write operation rejected, Ti rolled back If TS(Ti) < W-tiimestamp(Q), Ti attempting to write obsolete 

value of Q Write operation rejected and Ti rolled back Otherwise, write executed Any rolled back transaction Ti 

is assigned new timestamp and restarted Algorithm ensures conflict serializability and freedom from deadlock 

Schedule Possible Under Timestamp Protocol 
 

 


