
Dept. of Computer Science and Engineering Page 26

UNIT -2

PROCESS MANAGEMENT

Process Concept

An operating system executes a variety of programs:

Batch system – jobs

Time-shared systems – user programs or tasks

Textbook uses the terms job and process almost interchangeably

Process – a program in execution; process execution must progress in sequential fashion

A process includes:

program counter

stack

data section

Process in Memory

Process State

As a process executes, it changes state

new: The process is being created

running: Instructions are being executed

waiting: The process is waiting for some event to occur

ready: The process is waiting to be assigned to a processor

terminated: The process has finished execution

Diagram of Process State

Dept. of Computer Science and Engineering Page 27

Process Control Block (PCB)

Information associated with each process

Process state

Program counter

CPU registers

CPU scheduling information

Memory-management information

Accounting information

I/O status information

CPU Switch From Process to Process

Process Scheduling Queues

Job queue – set of all processes in the system

Ready queue – set of all processes residing in main memory, ready and waiting to execute

Device queues – set of processes waiting for an I/O device

Processes migrate among the various queues

Dept. of Computer Science and Engineering Page 28

Ready Queue and Various I/O Device Queues

Representation of Process Scheduling

Schedulers

 Long-term scheduler (or job scheduler) – selects which processes should be brought into the ready
queue

 Short-term scheduler (or CPU scheduler) – selects which process should be executed next and
allocates CPU

Dept. of Computer Science and Engineering Page 29

Addition of Medium Term Scheduling

Short-term scheduler is invoked very frequently (milliseconds) Þ (must be fast)

Long-term scheduler is invoked very infrequently (seconds, minutes) Þ (may be slow)

The long-term scheduler controls the degree of multiprogramming

Processes can be described as either:

I/O-bound process – spends more time doing I/O than computations, many short CPU bursts

CPU-bound process – spends more time doing computations; few very long CPU bursts

Context Switch

 When CPU switches to another process, the system must save the state of the old process and load the
saved state for the new process via a context switch

Context of a process represented in the PCB

Context-switch time is overhead; the system does no useful work while switching

Time dependent on hardware support

Process Creation

 Parent process create children processes, which, in turn create other processes, forming a tree of
processes

Generally, process identified and managed via a process identifier (pid)

Resource sharing

Parent and children share all resources

Children share subset of parent’s resources

Parent and child share no resources

Execution

Parent and children execute concurrently

Parent waits until children terminate

Address space

Child duplicate of parent

Child has a program loaded into it

UNIX examples

fork system call creates new process

exec system call used after a fork to replace the process’ memory space with a new program

Dept. of Computer Science and Engineering Page 30

Process Creation

C Program Forking Separate Process

int main()

{

pid_t pid;

/* fork another process */

pid = fork();

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

exit(-1);

}

else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);

}

else { /* parent process */

/* parent will wait for the child to complete */

wait (NULL);

printf ("Child Complete");

exit(0);

}

}

A tree of processes on a typical Solaris

Dept. of Computer Science and Engineering Page 31

Process Termination

Process executes last statement and asks the operating system to delete it (exit)

Output data from child to parent (via wait)

Process’ resources are deallocated by operating system

Parent may terminate execution of children processes (abort)

Child has exceeded allocated resources

Task assigned to child is no longer required

If parent is exiting Some operating system do not allow child to continue if its parent terminates

All children terminated - cascading termination

Interprocess Communication

Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes, including sharing data

Reasons for cooperating processes:

Information sharing

Computation speedup

Modularity

Convenience

Cooperating processes need interprocess communication (IPC)

Two models of IPC

Shared memory

Message passing

Communications Models

Cooperating Processes

Independent process cannot affect or be affected by the execution of another process

Cooperating process can affect or be affected by the execution of another process

Advantages of process cooperation

Information sharing

Computation speed-up

Modularity

Convenience

Dept. of Computer Science and Engineering Page 32

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process produces information that is consumed by a

consumer process

unbounded-buffer places no practical limit on the size of the buffer

bounded-buffer assumes that there is a fixed buffer size

Bounded-Buffer – Shared-Memory Solution

Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

Solution is correct, but can only use BUFFER_SIZE-1 elements

Bounded-Buffer – Producer

while (true) {

/* Produce an item */

while (((in = (in + 1) % BUFFER SIZE count) == out)

; /* do nothing -- no free buffers */

buffer[in] = item;

in = (in + 1) % BUFFER SIZE;

}

Bounded Buffer – Consumer

while (true) {

while (in == out)

; // do nothing -- nothing to consume

// remove an item from the buffer

item = buffer[out];

out = (out + 1) % BUFFER SIZE;

return item;

}

Interprocess Communication – Message Passing

Mechanism for processes to communicate and to synchronize their actions

Message system – processes communicate with each other without resorting to shared variables

IPC facility provides two operations:

send(message) – message size fixed or variable

receive(message)

If P and Q wish to communicate, they need to:

establish a communication link between them

exchange messages via send/receive

Implementation of communication link

physical (e.g., shared memory, hardware bus)

logical (e.g., logical properties)

Dept. of Computer Science and Engineering Page 33

Direct Communication

Processes must name each other explicitly:

send (P, message) – send a message to process P

receive(Q, message) – receive a message from process Q

Properties of communication link

Links are established automatically

A link is associated with exactly one pair of communicating processes

Between each pair there exists exactly one link

The link may be unidirectional, but is usually bi-directional

Indirect Communication

Messages are directed and received from mailboxes (also referred to as ports)

Each mailbox has a unique id

Processes can communicate only if they share a mailbox

Properties of communication link

Link established only if processes share a common mailbox

A link may be associated with many processes

Each pair of processes may share several communication links

Link may be unidirectional or bi-directional

Operations

create a new mailbox

send and receive messages through mailbox

destroy a mailbox

Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

Mailbox sharing

P1, P2, and P3 share mailbox A

P1, sends; P2 and P3 receive

Who gets the message?

Solutions

Allow a link to be associated with at most two processes

Allow only one process at a time to execute a receive operation

Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

Synchronization

Message passing may be either blocking or non-blocking

Blocking is considered synchronous

Blocking send has the sender block until the message is received

Blocking receive has the receiver block until a message is available

Non-blocking is considered asynchronous

Non-blocking send has the sender send the message and continue

Non-blocking receive has the receiver receive a valid message or null

Dept. of Computer Science and Engineering Page 34

Buffering

Queue of messages attached to the link; implemented in one of three ways

1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

Sender must wait if link full

3. Unbounded capacity – infinite length

Sender never waits

Examples of IPC Systems - POSIX

POSIX Shared Memory

Process first creates shared memory segment

segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);

Process wanting access to that shared memory must attach to it

shared memory = (char *) shmat(id, NULL, 0);

Now the process could write to the shared memory

printf(shared memory, "Writing to shared memory");

When done a process can detach the shared memory from its address space

shmdt(shared memory);

Examples of IPC Systems - Mach

Mach communication is message based

Even system calls are messages

Each task gets two mailboxes at creation- Kernel and Notify

Only three system calls needed for message transfer

msg_send(), msg_receive(), msg_rpc()

Mailboxes needed for commuication, created via

port_allocate()

Examples of IPC Systems – Windows XP

Message-passing centric via local procedure call (LPC) facility

Only works between processes on the same system

Uses ports (like mailboxes) to establish and maintain communication channels

Communication works as follows:

The client opens a handle to the subsystem’s connection port object
The client sends a connection request

The server creates two private communication ports and returns the handle to one of them to the client

The client and server use the corresponding port handle to send messages or callbacks and to listen for

replies

Dept. of Computer Science and Engineering Page 35

Local Procedure Calls in Windows XP

Communications in Client-Server Systems

Sockets

Remote Procedure Calls

Remote Method Invocation (Java)

Sockets

A socket is defined as an endpoint for communication

Concatenation of IP address and port

The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

Communication consists between a pair of sockets

Socket Communication

Remote Procedure Calls

Remote procedure call (RPC) abstracts procedure calls between processes on networked systems

Stubs – client-side proxy for the actual procedure on the server

The client-side stub locates the server and marshalls the parameters

The server-side stub receives this message, unpacks the marshalled parameters, and peforms the

procedure on the server

Dept. of Computer Science and Engineering Page 36

Execution of RPC

Remote Method Invocation

Remote Method Invocation (RMI) is a Java mechanism similar to RPCs

RMI allows a Java program on one machine to invoke a method on a remote object

Marshalling Parameters

Dept. of Computer Science and Engineering Page 37

Threads

 To introduce the notion of a thread — a fundamental unit of CPU utilization that forms the basis of
multithreaded computer systems

To discuss the APIs for the Pthreads, Win32, and Java thread libraries

To examine issues related to multithreaded programming

Single and Multithreaded Processes

Benefits

Responsiveness

Resource Sharing

Economy

Scalability

Multicore Programming

Multicore systems putting pressure on programmers, challenges include

Dividing activities

Balance

Data splitting

Data dependency

Testing and debugging

Multithreaded Server Architecture

Dept. of Computer Science and Engineering Page 38

Concurrent Execution on a Single-core System

Parallel Execution on a Multicore System

User Threads

Thread management done by user-level threads librarynThree primary thread libraries:

POSIX Pthreadsl Win32 threads

Java threads

Kernel Threads

Supported by the Kernel

Examples

Windows XP/2000

Solaris

Linux

Tru64 UNIX

Mac OS X

Multithreading Models

Many-to-One

One-to-One

Many-to-Many

Many-to-One

Many user-level threads mapped to single kernel thread

Examples:

Solaris Green Threads

GNU Portable Threads

One-to-One

Each user-level thread maps to kernel thread

Examples

Windows NT/XP/2000

Linux

Dept. of Computer Science and Engineering Page 39

Solaris 9 and later

Many-to-Many Model

Allows many user level threads to be mapped to many kernel threads

Allows the operating system to create a sufficient number of kernel threads

Solaris prior to version 9

Windows NT/2000 with the ThreadFiber package

Two-level Model

Similar to M:M, except that it allows a user thread to be bound to kernel thread

Examples

IRIX

HP-UX

Tru64 UNIX

Solaris 8 and earlier

Dept. of Computer Science and Engineering Page 40

Thread Libraries

Thread library provides programmer with API for creating and managing threads

Two primary ways of implementing

Library entirely in user space

Kernel-level library supported by the OS

Pthreads

May be provided either as user-level or kernel-level

A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

API specifies behavior of the thread library, implementation is up to development of the library

Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Java Threads

Java threads are managed by the JVM

Typically implemented using the threads model provided by underlying OS

Java threads may be created by:lExtending Thread class

Implementing the Runnable interface

Threading Issues

Semantics of fork() and exec() system calls

Thread cancellation of target thread

Asynchronous or deferred

Signal handling

Thread pools

Thread-specific data

Scheduler activations

Thread Cancellation

Terminating a thread before it has finished

Two general approaches:

Asynchronous cancellation terminates the target thread immediately

Deferred cancellation allows the target thread to periodically check if it should be cancelled

Signal Handling

Signals are used in UNIX systems to notify a process that a particular event has occurred

A signal handler is used to process signals

1. Signal is generated by particular event

2.Signal is delivered to a process

3.Signal is handled

Options:

Deliver the signal to the thread to which the signal applies

Deliver the signal to every thread in the process

Deliver the signal to certain threads in the process

Assign a specific threa to receive all signals for the process

Thread Pools

Create a number of threads in a pool where they await work

Advantages:

Usually slightly faster to service a request with an existing thread than create a new thread

Allows the number of threads in the application(s) to be bound to the size of the pool

Dept. of Computer Science and Engineering Page 41

Thread Specific Data

Allows each thread to have its own copy of data

Useful when you do not have control over the thread creation process (i.e., when using a thread pool)

Scheduler Activations

 Both M:M and Two-level models require communication to maintain the appropriate number of kernel

threads allocated to the application

 Scheduler activations provide upcalls - a communication mechanism from the kernel to the thread
library

 This communication allows an application to maintain the correct number kernel threads

Windows XP Threads

Implements the one-to-one mapping, kernel-level

Each thread contains

A thread id

Register set

Separate user and kernel stacks

Private data storage area

The register set, stacks, and private storage area are known as the context of the threads

The primary data structures of a thread include:

ETHREAD (executive thread block)

KTHREAD (kernel thread block)

TEB (thread environment block)

Dept. of Computer Science and Engineering Page 42

Linux Threads

Linux refers to them as tasks rather than threads

Thread creation is done through clone() system call

clone() allows a child task to share the address space of the parent task (process)

CPU Scheduling

To introduce CPU scheduling, which is the basis for multiprogrammed operating systems

To describe various CPU-scheduling algorithms

To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system

Maximum CPU utilization obtained with multiprogramming

CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait

CPU burst distribution

Histogram of CPU-burst Times

Dept. of Computer Science and Engineering Page 43

Alternating Sequence of CPU And I/O Bursts

CPU Scheduler

Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them

CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

Scheduling under 1 and 4 is nonpreemptive

All other scheduling is preemptive

Dispatcher

 Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this
involves:

switching context

switching to user mode

jumping to the proper location in the user program to restart that program

Dispatch latency – time it takes for the dispatcher to stop one process and start another running

Scheduling Criteria

CPU utilization – keep the CPU as busy as possible

Throughput – # of processes that complete their execution per time unit

Turnaround time – amount of time to execute a particular process

Waiting time – amount of time a process has been waiting in the ready queue

Response time – amount of time it takes from when a request was submitted until the first response is

produced, not output (for time-sharing environment)

Max CPU utilization

Max throughput

Min turnaround time

Min waiting time

Min response time

Dept. of Computer Science and Engineering Page 44

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

P1 P2 P3

0 24 27 30

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order

P2 , P3 , P1

The Gantt chart for the schedule is:nnnnWaiting time for P1 = 6; P2 = 0; P3 = 3nAverage waiting time: (6 +

0 + 3)/3 = 3

Much better than previous case

Convoy effect short process behind long process

0 3 6 30
Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst. Use these lengths to schedule the process

with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of processes
The difficulty is knowing

 Process Arrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

P2 P3 P1

Dept. of Computer Science and Engineering Page 45

SJF scheduling chart

average waiting time = (3 + 16 + 9 + 0) / 4 = 7the length of the next CPU request

0 3 9 16 24
Determining Length of Next CPU Burst

1. tn actual length of nth CPU burst

2. n 1 predicted value for the next CPU burst

3. , 0 1

4. Define :
Can only estimate the length

Can be done by using the length of previous CPU bursts, using exponential averaging

Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging

a =0

tn+1 = tn

Recent history does not count

a =1

tn+1 = a tn

Only the actual last CPU burst counts

If we expand the formula, we get:

tn+1 = a tn+(1 - a)a tn -1 + …

+(1 - a)j a tn -j + …

P4 P1 P3 P2

Dept. of Computer Science and Engineering Page 46

her avera ge turnar ound tha n SJF, but better re sponse

+(1 - a)n +1 t0

Since both a and (1 - a) are less than or equal to 1, each successive term has less weight than its predecessor

Priority Scheduling

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority (smallest integer º highest priority)

Preemptive

nonpreemptive

SJF is a priority scheduling where priority is the predicted next CPU burst time

Problem º Starvation – low priority processes may never execute

Solution º Aging – as time progresses increase the priority of the process

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this

time has elapsed, the process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the
CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.

Performance

q large Þ FIFO

q small Þ q must be large with respect to context switch, otherwise overhead is too high

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

The Gantt chart is:

Typically, hig

0 4 7 10 14 18 22 26 30

Time Quantum and Context Switch Time

P1 P2 P3 P1 P1 P1 P1 P1

Dept. of Computer Science and Engineering Page 47

Turnaround Time Varies With The Time Quantum

Multilevel Queue

 Ready queue is partitioned into separate queues:
foreground (interactive)

background (batch)

Each queue has its own scheduling algorithm

foreground – RR

background – FCFS

Scheduling must be done between the queues

Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of

starvation.

 Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes;
i.e., 80% to foreground in RR

20% to background in FCFS

Multilevel Queue Scheduling

Dept. of Computer Science and Engineering Page 48

Multilevel Feedback Queue

A process can move between the various queues; aging can be implemented this way

Multilevel-feedback-queue scheduler defined by the following parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process

method used to determine when to demote a process

method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue

Three queues:

Q0 – RR with time quantum 8 milliseconds

Q1 – RR time quantum 16 milliseconds

Q2 – FCFS

Scheduling

A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it

does not finish in 8 milliseconds, job is moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it

is preempted and moved to queue Q2.

Multilevel Feedback Queues

Thread Scheduling

Distinction between user-level and kernel-level threads

Many-to-one and many-to-many models, thread library schedules user-level threads to run on LWP

Known as process-contention scope (PCS) since scheduling competition is within the process

Kernel thread scheduled onto available CPU is system-contention scope (SCS) – competition among

all threads in system

Pthread Scheduling

API allows specifying either PCS or SCS during thread creation

PTHREAD SCOPE PROCESS schedules threads using PCS scheduling

PTHREAD SCOPE SYSTEM schedules threads using SCS scheduling.

Pthread Scheduling API

#include <pthread.h>
#include <stdio.h>

#define NUM THREADS 5

int main(int argc, char *argv[])

Dept. of Computer Science and Engineering Page 49

{

int i; pthread t tid[NUM THREADS];

pthread attr t attr;

/* get the default attributes */

pthread attr init(&attr);

/* set the scheduling algorithm to PROCESS or SYSTEM */

pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);

/* set the scheduling policy - FIFO, RT, or OTHER */

pthread attr setschedpolicy(&attr, SCHED OTHER);

/* create the threads */

for (i = 0; i < NUM THREADS; i++)

pthread create(&tid[i],&attr,runner,NULL);

/* now join on each thread */

for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

printf("I am a thread\n");

pthread exit(0);

}

Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are available

Homogeneous processors within a multiprocessor

Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating the

need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-scheduling, all processes in common ready
queue, or each has its own private queue of ready processes

Processor affinity – process has affinity for processor on which it is currently running

soft affinity

hard affinity

NUMA and CPU Scheduling

Dept. of Computer Science and Engineering Page 50

Multicore Processors

Recent trend to place multiple processor cores on same physical chip

Faster and consume less power

Multiple threads per core also growing

Takes advantage of memory stall to make progress on another thread while memory retrieve happens

Multithreaded Multicore System

Operating System Examples

Solaris scheduling

Windows XP scheduling

Linux scheduling

Solaris Dispatch Table

Dept. of Computer Science and Engineering Page 51

Solaris Scheduling

Windows XP Priorities

Linux Scheduling

Constant order O(1) scheduling time

Two priority ranges: time-sharing and real-time

Real-time range from 0 to 99 and nice value from 100 to 140

Dept. of Computer Science and Engineering Page 52

Priorities and Time-slice length

List of Tasks Indexed According to Priorities

Algorithm Evaluation

 Deterministic modeling – takes a particular predetermined workload and defines the performance of
each algorithm for that workload

Queuing models

Implementation

Evaluation of CPU schedulers by Simulation

Dept. of Computer Science and Engineering Page 53

CONCURRENCY

Process Synchronization

 To introduce the critical-section problem, whose solutions can be used to ensure the consistency of
shared data

To present both software and hardware solutions of the critical-section problem

To introduce the concept of an atomic transaction and describe mechanisms to ensure atomicity

Concurrent access to shared data may result in data inconsistency

Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating

processes

 Suppose that we wanted to provide a solution to the consumer-producer problem that fills all the buffers.
We can do so by having an integer count that keeps track of the number of full buffers. Initially, count

is set to 0. It is incremented by the producer after it produces a new buffer and is decremented by the
consumer after it consumes a buffer

Producer

while (true) {

/* produce an item and put in nextProduced */

while (count == BUFFER_SIZE)

; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}

Consumer

while (true) {

while (count == 0)

; // do nothing

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

/* consume the item in nextConsumed

}

Race Condition

count++ could be implemented as

register1 = count

register1 = register1 + 1

count = register1

count-- could be implemented as

register2 = count

register2 = register2 - 1

count = register2

Consider this execution interleaving with “count = 5” initially:

Dept. of Computer Science and Engineering Page 54

S0: producer execute register1 = count {register1 = 5}

S1: producer execute register1 = register1 + 1 {register1 = 6}

S2: consumer execute register2 = count {register2 = 5}

S3: consumer execute register2 = register2 - 1 {register2 = 4}

S4: producer execute count = register1 {count = 6 }

S5: consumer execute count = register2 {count = 4}

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can be executing

in their critical sections

2. Progress - If no process is executing in its critical section and there exist some processes that wish to enter

their critical section, then the selection of the processes that will enter the critical section next cannot be

postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other processes are allowed to enter their

critical sections after a process has made a request to enter its critical section and before that request is granted

Assume that each process executes at a nonzero speed

No assumption concerning relative speed of the N processes

Peterson’s Solution

Two process solution

Assume that the LOAD and STORE instructions are atomic; that is, cannot be interrupted.

The two processes share two variables:

int turn;

Boolean flag[2]

The variable turn indicates whose turn it is to enter the critical section.

The flag array is used to indicate if a process is ready to enter the critical section. flag[i] = true implies

that process Pi is ready!

Algorithm for Process Pi

do {

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = FALSE;

remainder section

} while (TRUE);

Synchronization Hardware

Many systems provide hardware support for critical section code

Uniprocessors – could disable interrupts

Currently running code would execute without preemption

Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions
Atomic = non-interruptable

Either test memory word and set value Or swap contents of two memory words

Dept. of Computer Science and Engineering Page 55

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

TestAndSet Instruction

Definition:

boolean TestAndSet (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

Solution using TestAndSet

Shared boolean variable lock., initialized to false.

Solution:

do {

while (TestAndSet (&lock))

; // do nothing

// critical section

lock = FALSE;

// remainder section

} while (TRUE);

Swap Instruction

Definition:

void Swap (boolean *a, boolean *b)

{

boolean temp = *a;

*a = *b;

*b = temp:

}

Solution using Swap

Shared Boolean variable lock initialized to FALSE; Each process has a local Boolean variable key

Solution:

do {

key = TRUE;

while (key == TRUE)

Swap (&lock, &key);

// critical section

lock = FALSE;

Dept. of Computer Science and Engineering Page 56

// remainder section

} while (TRUE);

Bounded-waiting Mutual Exclusion with TestandSet()

do {

waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && key)

key = TestAndSet(&lock);

waiting[i] = FALSE;

// critical section

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = FALSE;

else

waiting[j] = FALSE;

// remainder section

} while (TRUE);

Semaphore

Synchronization tool that does not require busy waiting nSemaphore S – integer variable

Two standard operations modify S: wait() and signal()

Originally called P() and V()

Less complicated

Can only be accessed via two indivisible (atomic) operations
wait (S) {

while S <= 0

; // no-op

S--;

}

signal (S) {

S++;

}

Semaphore as General Synchronization Tool

Counting semaphore – integer value can range over an unrestricted domain

Binary semaphore – integer value can range only between 0

and 1; can be simpler to implement

Also known as mutex locksnCan implement a counting semaphore S as a binary semaphore

Provides mutual exclusionSemaphore mutex; // initialized to do {

wait (mutex);
// Critical Section

signal (mutex);

// remainder section

Dept. of Computer Science and Engineering Page 57

} while (TRUE);

Semaphore Implementation

 Must guarantee that no two processes can execute wait () and signal () on the same semaphore at the
same time

 Thus, implementation becomes the critical section problem where the wait and signal code are placed in
the crtical section.

 Could now have busy waiting in critical section implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections and therefore this is not a good
solution.

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue. Each entry in a waiting queue has two data
items:

value (of type integer)

pointer to next record in the list

Two operations:

block – place the process invoking the operation on the appropriate waiting queue.

wakeup – remove one of processes in the waiting queue and place it in the ready queue.

Implementation of wait:

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

Implementation of signal:

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only one
of the waiting processes

Let S and Q be two semaphores initialized to 1

Dept. of Computer Science and Engineering Page 58

P0

wait (S);

wait (Q);

.

P1

wait (Q);

wait (S);

.

.
signal (S);

signal (Q);

.

.

signal (Q); signal (S);

 Starvation – indefinite blocking. A process may never be removed from the semaphore queue in which
it is suspended

 Priority Inversion - Scheduling problem when lower-priority process holds a lock needed by higher-
priority process

Classical Problems of Synchronization

Bounded-Buffer Problem

Readers and Writers Problem

Dining-Philosophers Problem

Bounded-Buffer Problem

N buffers, each can hold one item

Semaphore mutex initialized to the value 1

Semaphore full initialized to the value 0

Semaphore empty initialized to the value N.

The structure of the producer process

do { // produce an item in nextp

wait (empty);

wait (mutex);

// add the item to the buffer

signal (mutex);

signal (full);

} while (TRUE);

The structure of the consumer process

do { wait (full);

wait (mutex);

// remove an item from buffer to nextc

signal (mutex);

signal (empty);

// consume the item in nextc

} while (TRUE);

Readers-Writers Problem

A data set is shared among a number of concurrent processes

Readers – only read the data set; they do not perform any updates

Writers – can both read and writenProblem – allow multiple readers to read at the same time. Only one

single writer can access the shared data at the same time

Shared Data

Dept. of Computer Science and Engineering Page 59

Data set

Semaphore mutex initialized to 1

Semaphore wrt initialized to 1

Integer readcount initialized to 0

The structure of a writer process

do { wait (wrt) ;

// writing is performed

signal (wrt) ;

} while (TRUE);

The structure of a reader process

do {

wait (mutex) ;

readcount ++ ;

if (readcount == 1)

wait (wrt) ;

signal (mutex)

// reading is performed

wait (mutex) ;

readcount - - ;

if (readcount == 0)

signal (wrt) ;

signal (mutex) ;

} while (TRUE);

Dining-Philosophers Problem

do {

Shared data

Bowl of rice (data set)

Semaphore chopstick [5] initialized to 1

The structure of Philosopher i:

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

Dept. of Computer Science and Engineering Page 60

Problems with Semaphores

Incorrect use of semaphore operations:

l signal (mutex)

….

wait (mutex)

wait (mutex) …

wait (mutex)

Omitting of wait (mutex) or signal (mutex) (or both)

Monitors

A high-level abstraction that provides a convenient and effective mechanism for process synchronization

Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code (….) { … }

…

}

}

Schematic view of a Monitor

Condition Variables

condition x, y;

Two operations on a condition variable:

x.wait () – a process that invokes the operation is

suspended.

x.signal () – resumes one of processes (if any) that

invoked x.wait ()

Dept. of Computer Science and Engineering Page 61

Monitor with Condition Variables

Solution to Dining Philosophers

monitor DP

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self [i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

Dept. of Computer Science and Engineering Page 62

Each philosopher I invokes the operations pickup()

and putdown() in the following sequence:

DiningPhilosophters.pickup (i);

EAT

DiningPhilosophers.putdown (i);

Monitor Implementation Using Semaphores

Variables
semaphore mutex; // (initially = 1)

semaphore next; // (initially = 0)

int next-count = 0;nEach procedure F will be replaced by

wait(mutex);

…

body of F;

…

if (next_count > 0)

signal(next)

else

signal(mutex);nMutual exclusion within a monitor is ensured.

Monitor Implementation

For each condition variable x, we have:

semaphore x_sem; // (initially = 0)

int x-count = 0;nThe operation x.wait can be implemented as:

x-count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x-count--;

The operation x.signal can be implemented as:

if (x-count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{

boolean busy;

condition x;

void acquire(int time) {

Dept. of Computer Science and Engineering Page 63

if (busy)

x.wait(time);

busy = TRUE;

}

void release() {

busy = FALSE;

x.signal();

initialization code() {

}

}

busy = FALSE;

}

Synchronization Examples

Solaris

Windows XP

Linux

Pthreads

Solaris Synchronization

 Implements a variety of locks to support multitasking, multithreading (including real-time threads),
and multiprocessing

Uses adaptive mutexes for efficiency when protecting data from short code segments

Uses condition variables and readers-writers locks when longer sections of code need access to data

Uses turnstiles to order the list of threads waiting to acquire either an adaptive mutex or reader-writer

lock

Windows XP Synchronization

Uses interrupt masks to protect access to global resources on uniprocessor systems

Uses spinlocks on multiprocessor systems

Also provides dispatcher objects which may act as either mutexes and semaphores

Dispatcher objects may also provide events

An event acts much like a condition variable

Linux Synchronization

Linux:lPrior to kernel Version 2.6, disables interrupts to implement short critical sections

Version 2.6 and later, fully preemptive

Linux provides:

semaphores

spin locks

Pthreads Synchronization

Pthreads API is OS-independent

It provides:

mutex locks

condition variablesnNon-portable extensions include:

read-write locks

Dept. of Computer Science and Engineering Page 64

spin locks

Atomic Transactions

System Model

Log-based Recovery

Checkpoints

Concurrent Atomic Transactions

System Model

Assures that operations happen as a single logical unit of work, in its entirety, or not at all

Related to field of database systems

Challenge is assuring atomicity despite computer system failures

Transaction - collection of instructions or operations that performs single logical function

Here we are concerned with changes to stable storage – disk

Transaction is series of read and write operations

Terminated by commit (transaction successful) or abort (transaction failed) operation Aborted

transaction must be rolled back to undo any changes it performed

Types of Storage Media

Volatile storage – information stored here does not survive system crashes

Example: main memory, cache

Nonvolatile storage – Information usually survives crashes

Example: disk and tape

Stable storage – Information never lost

Not actually possible, so approximated via replication or RAID to devices with independent failure

modes

 Goal is to assure transaction atomicity where failures cause loss of information on volatile storage

Log-Based Recovery

Record to stable storage information about all modifications by a transaction

Most common is write-ahead logging

Log on stable storage, each log record describes single transaction write operation, including
Transaction name

Data item name

Old value

New value

<Ti starts> written to log when transaction Ti starts

<Ti commits> written when Ti commits

Log entry must reach stable storage before operation on data occurs

Log-Based Recovery Algorithm

Using the log, system can handle any volatile memory errors

Undo(Ti) restores value of all data updated by Ti

Redo(Ti) sets values of all data in transaction Ti to new values

Undo(Ti) and redo(Ti) must be idempotent

Multiple executions must have the same result as one execution

Dept. of Computer Science and Engineering Page 65

If system fails, restore state of all updated data via log

If log contains <Ti starts> without <Ti commits>, undo(Ti)

If log contains <Ti starts> and <Ti commits>, redo(Ti)

Checkpoints

Log could become long, and recovery could take long

Checkpoints shorten log and recovery time.

Checkpoint scheme:

1.Output all log records currently in volatile storage to stable storage

2.Output all modified data from volatile to stable storage

3. Output a log record <checkpoint> to the log on stable storage

Now recovery only includes Ti, such that Ti started executing before the most recent checkpoint, and all

transactions after Ti All other transactions already on stable storage

Concurrent Transactions

Must be equivalent to serial execution – serializability

Could perform all transactions in critical section

Inefficient, too restrictive

Concurrency-control algorithms provide serializability

Serializability

Consider two data items A and B

Consider Transactions T0 and T1

Execute T0, T1 atomically

Execution sequence called schedule

Atomically executed transaction order called serial schedule

For N transactions, there are N! valid serial schedules

Schedule 1: T0 then T1

Nonserial Schedule

Nonserial schedule allows overlapped execute

Resulting execution not necessarily incorrect

Consider schedule S, operations Oi, Oj

Conflict if access same data item, with at least one write

If Oi, Oj consecutive and operations of different transactions & Oi and Oj don’t conflict

Then S’ with swapped order Oj Oi equivalent to S

If S can become S’ via swapping nonconflicting operations

S is conflict serializable

Dept. of Computer Science and Engineering Page 66

Schedule 2: Concurrent Serializable Schedule

Locking Protocol

Ensure serializability by associating lock with each data item

Follow locking protocol for access control

Locks

Shared – Ti has shared-mode lock (S) on item Q, Ti can read Q but not write Q

Exclusive – Ti has exclusive-mode lock (X) on Q, Ti can read and write Q

Require every transaction on item Q acquire appropriate lock

If lock already held, new request may have to wait

Similar to readers-writers algorithm

Two-phase Locking Protocol

Generally ensures conflict serializability

Each transaction issues lock and unlock requests in two phases

Growing – obtaining locks

Shrinking – releasing locks

Does not prevent deadlock

Timestamp-based Protocols

Select order among transactions in advance – timestamp-ordering

Transaction Ti associated with timestamp TS(Ti) before Ti starts

TS(Ti) < TS(Tj) if Ti entered system before Tj

TS can be generated from system clock or as logical counter incremented at each entry of transaction

Timestamps determine serializability order

If TS(Ti) < TS(Tj), system must ensure produced schedule equivalent to serial schedule where Ti

appears before Tj

Timestamp-based Protocol Implementation

Data item Q gets two timestamps

W-timestamp(Q) – largest timestamp of any transaction that executed write(Q) successfully

R-timestamp(Q) – largest timestamp of successful read(Q)

Dept. of Computer Science and Engineering Page 67

Updated whenever read(Q) or write(Q) executed

Timestamp-ordering protocol assures any conflicting read and write executed in timestamp order
Suppose Ti executes read(Q)

If TS(Ti) < W-timestamp(Q), Ti needs to read value of Q that was already overwritten read operation rejected

and Ti rolled back

If TS(Ti) ≥ W-timestamp(Q) read executed, R-timestamp(Q) set to max(R-timestamp(Q), TS(Ti))

Timestamp-ordering Protocol

Supose Ti executes write (Q)

If TS(Ti) < R-timestamp(Q), value Q produced by Ti was needed previously and Ti assumed it would never be

produced Write operation rejected, Ti rolled back If TS(Ti) < W-tiimestamp(Q), Ti attempting to write obsolete

value of Q Write operation rejected and Ti rolled back Otherwise, write executed Any rolled back transaction Ti

is assigned new timestamp and restarted Algorithm ensures conflict serializability and freedom from deadlock

Schedule Possible Under Timestamp Protocol

